Logic and Language

Logic and Language

Copyright © James R Meyer 2012 - 2018 https://www.jamesrmeyer.com

This page is keyboard accessible:

• Use**Tab**, **Shift + Tab **keys to traverse the main menu. To enter a sub-menu use the **Right Arrow** key. To leave a sub-menu use the **Left Arrow** or the **Escape** key.

• The**Enter** or the **Space** key opens the active menu item.

• To skip the menu and move to the main content, press**Tab** after the page loads to reveal a skip button.

• To get back to the top of the page anytime, press the**Home** key.

• For more information, click here: Accessibility Close this tip.

• Use

• The

• To skip the menu and move to the main content, press

• To get back to the top of the page anytime, press the

• For more information, click here: Accessibility Close this tip.

Note: Full functionality of this web page requires JavaScript to be enabled in your browser.

Mark Chu-Carroll is a computer scientist and software engineer. He writes a blog Good Math, Bad Math which has the headline:

*“Good Math, Bad Math: Finding the fun in good math. Squashing bad math and the fools who promote it.”*

Previously, I had a great deal of respect for Chu-Carroll, and I even wrote in a previous blog that *in general he doesn’t dismiss anyone as a crank unless he can provide a reasoned explanation as to why they are wrong*.

But it seems that when he is against the ropes, he plays dirty. I recently posted some comments on one of his blog pages Why we need formality in mathematics, and when it was evident that my comments were irking him, he resorted to various well-known dishonest debating tricks.

One of those tricks was suddenly questioning the meaning of a term whose meaning is perfectly clear, in this case the term “*finite representation*”.

Chu-Carroll asks in a comment:

*What do you mean by real numbers that have no finite representation? That’s one of those informal terms that sounds nice, but could mean several different things.*

But in his previous comment he had used that very term without any quibble, indicating that it was quite clear to him what the term means, saying:

*…how can I prove that there are sets without finite representation in set theory? Very easily…*

And he had used that very term himself in two of his previous blogs, where he makes it very clear what he thinks it means for a number to have or not to have a finite representation - in his blog You can’t even describe most numbers! he says:

*The basics are really easy to explain: A describable number is a number for which there is some finite representation. An indescribable number is a number for which there is no finite notation.*

And he wrote precisely the same thing in another blog You can’t write that number; in fact, you can’t write most numbers.

So in my next comment I ask him why he is now asking me what “finite representation” means:

You ask me now?… Is that intended as a joke?

and point out:

… you have described and explained it several times on your blog (do a Google advanced site search for the phrase “finite representation”).

In his reply he ignores what I said, and tries to confuse the issue by asking me as to what is the correct definition of “* infinite representation*”, a term I

*Which one?*

(*1*)* A number has an infinite representation if its decimal (or binary if you prefer) expansion has an infinite number of digits.*

(*2*) *A number has an infinite representation if its expansion in every integral number base has an infinite number of digits.*

(*3*)* A number has an infinite representation if its expansion in every integral number base has a non-terminating, non-repeating sequence of digits?*

(*4*)* A number has an infinite representation if there is no finite-length program in a recursive computing system that produces its digits.*

(*5*)* A number has an infinite representation there is no way of uniquely identifying the number in a finite amount of space.*

Chu-Carroll simply assumes that:

*not having a finite representation*

implies:

*having some sort of representation that is not finite*

which is an implication that lacks any logical foundation. He assumes that the notion that a number might “exist” but have an infinite representation is a valid notion, but I have no idea what an infinite representation might be. So the answer to the question as to which of his five choices I might choose is none of them, since I consider the concept to be meaningless.

In the same comment he has the gall to tell me that “* you’re not arguing honestly*” on the basis that I hadn’t defined the term ‘finite representation’, even though I had shown that he had a very clear understanding of the term. In my next comment I again point out that Chu-Carroll had already previously himself used the very term “finite representation” in his blogs, but I provided my own definition anyway:

A real number having a finite representation; There is a definition in a given formal system that can be written down with a finite number of symbols, and which precisely defines the entire expansion of that number (to a given base).

A real number not having a finite representation; There is no definition in any formal system that can be written down with a finite number of symbols, and which precisely defines the entire expansion of that number (to a given base).

Yet, after I provided that definition, he continues in his next comment to berate me for not defining * his* term “infinite representation”, a term that I do not use:

*… the phrase “infinite representation” can have multiple meanings, and I carefully gave you a list of options.* (*Which, I will note, you ignored and gave your own, less precise definition.*)

In my next comment, I point out that, contrary to what Chu-Carroll had written,:

I never used the term “infinite representation”. That is why I did not define it, and why I ignored your definitions of it. The term I actually used was “finite representation”, whose meaning is perfectly clear to you, as used in your blogs…

Chu-Carroll’s reply is:

*Your problem in this entire discussion is that you don’t understand any of the things that you’re talking about.*

And that just about sums up Chu-Carroll’s blatant duplicity - when he finally realizes that he cannot any longer pretend that he doesn’t know what the term “finite representation” means, he changes tack and resorts to claiming that I don’t understand * anything* of what we have been discussing, even though it was I who had to use several comments to show him that the term “finite representation” was easily understandable, even by him.

*Other Blog Posts*

Dec 2018

Nov 2018

Jun 2018:

Aug 2017:

Dec 2017:

Feb 2017:

Jan 2017:

Apr 2016:

May 2015:

Mar 2015:

Feb 2015:

Mar 2015:

Apr 2015:

Diverse opinions and criticisms are welcome, but messages that are frivolous, irrelevant or devoid of logical basis will be blocked. Difficulties in understanding the site content are usually best addressed by contacting me by e-mail. Note: you will be asked to provide an e-mail address - any address will do, it does not require verification. Your e-mail will only be used to notify you of replies to your comments - it will never be used for any other purpose and will not be displayed. If you cannot see any comments below, see Why isn’t the comment box loading?.

There is now a paper that deals with the matter of language and the diagonal proof, see On Considerations of Language in the Diagonal Proof.

There is now a new page on a contradiction in Lebesgue measure theory.

I found that making, adding or deleting footnotes in the traditional manner proved to be a major pain. So I developed a different system for footnotes which makes inserting or changing footnotes a doddle. You can check it out at Easy Footnotes for Web Pages (Accessibility friendly).

I have now added a new section to my paper on Russell O’Connor’s claim of a computer verified incompleteness proof. This shows that the flaw in the proof arises from a reliance on definitions that include unacceptable assumptions - assumptions that are not actually checked by the computer code. See also the new page Representability.

For convenience, there are now two pages on this site with links to various material relating to Gödel and the Incompleteness Theorem

– a page with general links:

– and a page relating specifically to the Gödel mind-machine debate:

All pages on this website are printer friendly, and will print the main content in a convenient format. Note that the margins are set by your browser print settings.

Note: for some browsers JavaScript must be enabled for this to operate correctly.

Comments on this site are welcome, please see the comment section.

Please note that this web site, like any other is a collection of various statements. Not all of this web site is intended to be factual. Some of it is personal opinion or interpretation.

If you prefer to ask me directly about the material on this site, please send me an e-mail with your query, and I will attempt to reply promptly.

Feedback about site design would also be appreciated so that I can improve the site.

Copyright © James R Meyer 2012 - 2018

https://www.jamesrmeyer.com