
A FUNDAMENTAL FLAW IN AN INCOMPLETENESS PROOF
IN THE BOOK

“AN INTRODUCTION TO GÖDEL’S THEOREMS” (Second Edition)
BY PETER SMITH

James R Meyer
http://www.jamesrmeyer.com

v2 08 Oct 2014

Abstract
This paper examines a proof of incompleteness given by Peter Smith in a book entitled ‘An
Introduction to Gödel’s Theorems’. Smith’s proof is one of a number of purported proofs
of incompleteness which have the intention that the proof be simpler than Gödel’s original
incompleteness proof and which are achieved by following a proof schema that is intended
to be simpler than that in Gödel’s original proof. This paper shows that Smith’s proof makes
erroneous assumptions regarding relations of number theory which result in contradictions
and which render the proof invalid.

Version History
v1 26 Oct 2011: References to numbered sections of Smith’s book refer to the

first edition (2007) of Smith’s book.
v2 08 Oct 2014: References to numbered sections of Smith’s book now refer to the

second edition (2013) of Smith’s book.
Updated to reflect Smith’s use of an overscore function x.
Updated to reflect Smith’s renaming of the exp function to the exf function.

1 Introduction

Note: References in this paper refer to the second edition of Smith’s book. The numbering of
sections is very different in Smith’s first and second editions; if you are following Smith’s first
edition, it is recommended that you use an earlier version of this paper, which is available at
http://www.jamesrmeyer.com where the references are correct for that edition.
Since Gödel published his original proof of incompleteness[3] over seventy years ago, there
have been many who find his proof difficult to follow, and as a result there have been numerous
attempts (see, for example Smullyan[8]) to provide proofs of incompleteness that are simpler
than Gödel’s original proof. In such attempts at simpler proofs of incompleteness, there is
a tendency for the authors of these simplified proofs to overlook certain fundamental logical
considerations. This paper examines one such attempt at a simplified proof which is given in a
book written by Peter Smith, entitled ‘An Introduction to Gödel’s Theorems’.[7]
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2 Considerations of Gödel Numbering Functions

One of the key ideas behind Gödel’s incompleteness proof is that we can form a correspondence
between formulas of the formal system and natural numbers, so that for every relationship
between formulas of the formal system we can map that relationship precisely to relationships
between natural numbers; so that if a certain relationship between formal system formulas
applies, then there is corresponding relationship between natural numbers which also applies.
The system that is used inGödel’s proof [3] tomap the formal system formulas to natural numbers
is normally called the Gödel numbering system. Gödel numbering systems are commonly used
in other proofs of incompleteness. The standard description of a Gödel numbering system
proceeds as follows:
First we have a function ψ that gives a one-to-one correspondence of each formal symbol to
some natural number. So we might have, for example:

Formal Corresponding
Symbol number

S ψ[S]≡ 2
0 ψ[0]≡ 3
¬ ψ[¬]≡ 5
∀ ψ[∀]≡ 7
∃ ψ[∃]≡ 9
= ψ[=]≡ 11
( ψ[(]≡ 13
) ψ[)]≡ 15

For a given formal formula, this gives, by application of the ψ function, a series of number
values. The second step is to apply another function to this series. This function takes each
of these number values in sequence; for the nth such value, the nth prime number is raised
to the power of that value (the value given by the ψ function), and this gives another series of
number values. The final step is to take all of these values and multiply them together. This now
gives a single number value. Given any formal system formula, there is a corresponding Gödel
numbering for that formula, a number that is unique for that formula; the Gödel numbering
preserves the uniqueness of the formulas, each formula having one corresponding number, for
example:

Formal Corresponding
Expression Gödel number
0 23

SSS0 22.32.52.72.113

¬(SSSS0 = SS0) 25.313.52.72.112.132.173.1911.232.292.313.3715

And, given any number, we can also reverse the process to give the original formal system
formula (note that if a number is not a Gödel number for some symbol combination of the
formal system, no formal symbol combination will be given by the reverse process; in principle
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this is immaterial, since the Gödel numbering system could be modified so that every number
is the Gödel number of some combination of formal system symbols).
It is quite evident that the Gödel numbering system is stated in a language that is a meta language
to the formal system. In spite of this, there are several purported proofs of incompleteness in
which there is either an implicit assumption or a direct assertion that there exist formulas of
the formal system that actually include all of the information that is contained within the Gödel
numbering system. Peter Smith’s proof is one such example.
Before we examine Smith’s proof, it is worth noting that it is generally the case that in
descriptions of Gödel numbering the format of the resultant Gödel numbers given by the Gödel
numbering system is ignored. In most cases the Gödel numbers are simply assumed to be natural
numbers where the actual format is immaterial; whenever specific references to individual Gödel
numbers are made, they are generally presented in standard decimal (base 10) format.
But if there is a distinction between natural numbers in the format in which they occur in the
meta language and natural numbers in the format of the formal system, then there is similarly a
distinction between a Gödel numbering function whose range is natural numbers in the format
of the meta language, and a Gödel numbering function whose range is natural numbers in
the format of the formal system. This can be clarified by an appropriate designation. If
the function gives the Gödel numbers as natural numbers in the meta language (i.e., that are
not necessarily symbol combinations of the formal system that represent natural numbers) we
designate that function as GN[n]. If the function gives the Gödel numbers in the format of
symbol combinations of the formal system that represent natural numbers, we designate that
function as FSGN[x]. So, for example, for a GN[n] function and a FSGN[x] function, we
might have:a

Corresponding Gödel Corresponding Gödel
Formal number as given number as given
Symbol by the GN[n] function by the FSGN[x] function
S 22 SSS . . .0
0 23 SSS . . . . . .0
¬ 25 SSS . . . . . . . . .0
∀ 27 SSS . . . . . . . . . . . .0
∃ 29 SSS . . . . . . . . . . . . . . .0
= 211 SSS . . . . . . . . . . . . . . . . . .0
( 213 SSS . . . . . . . . . . . . . . . . . . . . .0
) 215 SSS . . . . . . . . . . . . . . . . . . . . . . . .0

Note that the symbol combinations that represent numbers in the formal system, such as 0, S0,
SS0, SSS0, . . . may also represent numbers in the meta language. In that case, any value given
by the FSGN[x] function can be a value of the meta language, but the same does not apply for
the GN[n] function in respect of the formal system; that is, a value given by the GN[n] function
is not necessarily a value that is a natural number in the format of the formal system.

a Note that since an attempt to write out the entire series of Ss would be rather impractical, we use here the
abbreviation . . . .
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3 Terminology

Before we consider the details of Peter Smith’s account of an incompleteness theorem,[7] we
shall first address the terminology; for the sake of clarity we will use a slightly different
terminology to that in Smith’s book, as some of Smith’s terminology makes for difficult reading.
Smith refers to the ‘numeral’ of a number, by which he means the combination of symbols of the
formal system that represent a natural number (see Smith’s Section 5.2). This is a function, and
Smith denotes it by an overscore: x, so that, for example, 6 indicates the symbol combination
SSSSSS0 of the formal system.
Smith uses the term ⌜Φ⌝ (where Φ is a variable with the domain of symbol combinations of
the formal system) to represent two entirely different concepts (see Smith’s Section 19.5). This
makes reading Smith’s account somewhat cumbersome, and for this reason, we will clearly
differentiate the two concepts as follows. The two concepts represented by ⌜Φ⌝ are:

• the Gödel number for Φ, where the Gödel number is the format of the meta language, not
in the format of numbers of the formal system. We will use the term GN[Φ] instead.

• where the term ⌜Φ⌝ occurs in an expression which is a representation (in the meta
language) of a formal symbol combination, it represents what Smith refers to as the
numeral of the Gödel number of Φ, i.e., in our terminology, this is GN[Φ]. It will be
observed that if FSGN[Φ] is a Gödel numbering function that gives Gödel numbers in
the format of the formal system, then GN[Φ]] ≡ FSGN[Φ].

In addition, Smith uses different fonts in an attempt to distinguish symbols of the formal system
and symbols of the meta language, using sans-serif fonts for symbols that are symbols of the
formal system, and serif fonts for symbols of the meta language. However, he also uses sans
serif fonts for expressions of the meta language that are not symbol combinations of the formal
language but which represent symbol combinations of the formal language. This also makes
reading his text unnecessarily cumbersome, so here all symbols of the formal system will be
highlighted in gray, as in this example:

∃y(y = SSS0)
It follows that any symbol (or combination of symbols) that is not so highlighted is not a symbol
of the formal system; but it can represent (in the meta language) a symbol combination of the
formal system.
Furthermore, for clarity, in this paper square brackets [ ] will be used to indicate brackets in
the meta language, while round brackets ( ) will be reserved to indicate brackets of the formal
system.
One other term used that is slightly different to Smith’s terminology is the term GdlFS

[x, y].
Given thatGdl[m,n] is a relation in the meta-language, Smith uses the non-italicized Gdl[x,y] to
represent the symbol combination of the formal language that expresses this relation Gdl[m,n]
in the formal language, whereas we will use GdlFS

[x, y] to represent this concept (this is
explained further on page 7).
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4 Definitions used in Smith’s proof

We now proceed to the examination of Smith’s proof. Smith defines:

n =GN[Φ] (4.1)

where n is a variable whose domain is natural numbers, and Φ is a variable whose domain is
symbol combinations of the formal system.
Theorem 19.2 of Smith’s Section 19.6 introduces a function diag[n] which Smith defines as:

diag[n] =GN[∃y(y = ⌜Φ
⌝
∧Φ)]

where ‘∃y(y =’, ‘∧’, and ‘)’ are symbols of the formal system. Since that part of the expression
that is ‘∃y(y = ⌜Φ⌝ ∧Φ)’ is intended to signify a symbol combination of the formal system, then,
using the unambiguous terminology given above, we have:

diag[n] =GN[∃y(y = GN[Φ] ∧Φ)]

=GN[∃y(y = FSGN[Φ] ∧Φ)] (4.2)

where n =GN[Φ].
Smith asserts that diag[n] is a primitive recursive number function. His proof of that assertion
is as follows. In his proof of his Theorem 20.1 in his Section 20.1, he asserts that we can define
a primitive recursive number function (which is denoted by ∗ ) as:

m∗n = [µx ≤ B(m,n)][[∀i < len[m]]{exf [x, i] = exf [m, i]}
∧ [∀i ≤ len[n]]{exf [x, i+ len[m]] = exf [n, i]}]

(4.3)

where B(m,n), len, and exf are themselves primitive recursive.b He uses this function m∗n
to define (see ‘Proof for (i)’ which follows Smith’s Theorem 20.2 in his Section 20.1) a further
primitive recursive number function num[x] as:

num[0] = 221

num[x+1] = 223
∗num[x]

(4.4)

Smith defines a function f [n] in terms of this function num[x] as:

f [n] =C1∗num[n]∗C2∗n∗C3 (4.5)

where C1, C2, and C3 are numerical constants. Smith asserts that since ∗ and num[n] are
primitive recursive number functions, this function is a primitive recursive number function.
Now, letting C1 =GN[∃y(y =], C2 =GN[∧], and C3 =GN[)] gives:

f [n] =GN[∃y(y =]∗num[n]∗GN[∧]∗n∗GN[)] (4.6)

b See Smith’s Section 14.8 for his definition of µ, his Section 14.8 for his definitions of len and exf , and his Section
20.1 for his definition of B(m,n).
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Smith asserts in his ‘Proof for (i)’ which follows his Theorem 20.2 in his Section 20.1, that since
it can be seen that:c

num[n] =GN[n] (4.7)

then this gives that:

f [n] =GN[∃y(y =]∗GN[n]∗GN[∧]∗n∗GN[)] (4.8)

and given that n =GN[Φ] (equation 4.1 above), we have:

f [n] =GN[∃y(y =]∗GN[GN[Φ]]∗GN[∧]∗GN[Φ]∗GN[)]

=GN[∃y(y =]∗GN[FSGN[Φ]]∗GN[∧]∗GN[Φ]∗GN[)] (4.9)

and finally, by the assertion in Smith’s ‘Proof for (ii)’ which follows his Theorem 20.2 in his
Section 20.1 that in general, where A and B are symbol combinations of the formal system,

GN[A]∗GN[B] =GN[AB] (4.10)

we have from equation 4.9 that:

f [n] =GN[∃y(y = FSGN[Φ] ∧Φ)] (4.11)

which is the original definition of diag[n] as in equation 4.2 above. Smith’s claim is that
since f [n] is defined as a primitive recursive number function (in equation 4.5 above), and
since the function f [n] is the function diag[n], then diag[n] must be a primitive recursive
number function. Smith asserts that since that is the case, diag[n] can be expressed in the
formal system. Note that Smith frequently refers to the expression ∃y(y =FSGN[Φ]∧Φ) as the
‘diagonalization’ of Φ.d

5 Smith’s Incompleteness Formula

We follow Smith’s use of the diag function to elicit his proof of incompleteness in full detail,
including detailed definitions of formal system formulas referred to in the proof,e proceeding
according to the outline argument given in Smith’s Section 21.2. In Smith’s Section 19.4, he
defines a relation Pr f [m,n] such that Pr f [m,n] holds if and only if:

• m is the Gödel number of a symbol combination M of the formal system,

• n is the Gödel number of a symbol combination N of the formal system,

• M is the proof (in the formal system) of N.
c Where the Gödel numbering function assigns 21 as the number corresponding to the formal symbol 0, and 23 as
the number corresponding to the formal symbol S.

d See Smith’s Section 19.6.
e Much of this detail is omitted in Smith’s account.
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Smith asserts that this relation is a primitive recursive number relation (he provides a sketch of
a proof in his Section 19.4 and a more complete proof in his Section 20.4). He defines a further
relation as follows (Smith’s Section 21.2):

Gdl[m,n] = Pr f [m, diag[n]]

Smith asserts in his Section 21.2 that since Gdl[m,n] is defined in terms of Pr f and diag, which
are primitive recursive then Gdl[m,n] is also a primitive recursive number relation. Smith now
defines a formula U[y] as:

U[y] = ∀x¬GdlFS
[x, y]

where ‘∀x¬’ is a symbol combination of the formal system, and GdlFS
[x, y] is a formal system

formula that expresses in the formal system the relation Gdl[m,n]. Note that in Smith’s account,
in his Section 21.2, the italicized Gdl[m,n] is a relation in the meta language, and the non-
italicized Gdl[x,y] is a meta language representation of the symbol combination for that relation
in the formal language. Here, for clarity, we use the terms Gdl[m,n] for the relation of the meta
language, and GdlFS

[x, y] to represent the symbol combination of the formal language that
expresses the relation Gdl[m,n] in the formal language.
Since U[y] is intended to be a representation of an actual formal symbol combination, if
Pr f FS

[x, y] is the formula of the formal system that expresses in the formal system the relation
Pr f [m,n], and if diagFS

[y] is the formula of the formal system that expresses in the formal
system the relation diag[n], this gives:

GdlFS
[x, y] = Pr f FS

[x, diagFS
[y]]

so that:

U[y] =∀x¬GdlFS
[x, y] (5.1)

=∀x¬ Pr f FS
[x, diagFS

[y]] (5.2)

Given the definition of U[y], Smith defines a formula of the formal system G (which he calls
the ‘Gödel sentence’) as:

G = ∃y(y = ⌜U⌝ ∧U[y] )

Using the unambiguous terminology as indicated above (see Section 3), this gives Smith’s
formula G as defined above as:

G =∃y(y = FSGN[U[y]] ∧U[y]) (5.3)

Smith asserts that upon examination of this formula G, we can see that it is true if and only if it is
unprovable in the formal system. He asserts, that by the equivalence given by Gödel numbering,
G is true if and only if there is no number m such that Gdl[m,GN[U]]. Hence he is asserting
that G is true if and only if there is no number m such that m is the Gödel number for a formal
proof of the diagonalization of the formula with the Gödel number that is GN[U]. Smith does
not give a detailed account of his assertions, but it is a straight-forward matter to do so, and we
proceed as follows.

7



Smith asserts that the formula G is a formula of the formal system. Since G is a formula of the
formal system then there must be some symbol combination of the formal system that the term
FSGN[U[y]] in that formula represents. We use Q to represent this symbol combination and
substituting Q for FSGN[U[y]], and substituting∀x¬ Pr f FS

[x, diagFS
[y]] forU[y] (as given

by equation 5.2) gives G as:

∃y(y = Q ∧∀x¬ Pr f FS
[x, diagFS

[y]] )

In this formula, the term Pr f FS
[x, diagFS

[y]] represents a formal system combination which
is a relation with the free variables x and y. Now, although Smith asserts that diag[n] and the
formula G can be expressed in the formal system, he does not give a detailed definition of a
formula of the formal system that might express diag[n] or G. However, we can construct a full
definition of these formulas from Smith’s definitions and the argument that he presents.

First we let ◇ represent a symbol combination of the formal system that is a formula that
expresses in the formal system the primitive recursive number function ∗ as defined in equation
4.3 above. And we let numFS

[y] represent a symbol combination of the formal system that is a
formula which expresses in the formal system the primitive recursive number function num[x]
(as defined in equation 4.4 above) and is defined by:f

numFS
[0] = SSS . . .0

numFS
[y +S0] = SSS . . . . . . . . .0 ◇ numFS

[y]

Now, if diag[n] is a function that can be expressed in the formal system, as Smith asserts, then
we will have the corresponding result where diagFS

[y] defines a symbol combination of the
formal system that expresses in the formal system the function diag[n], where y is a variable of
the formal system, and where

y = FSGN[Φ] (5.4)

which corresponds to n =GN[Φ] in the definition of diag[n] (as in equation 4.1), which gives:

diagFS
[y] = FSGN[∃y(y =]◇numFS

[y]◇FSGN[∧]◇ y ◇FSGN[)]

which corresponds to the definition of diag[n] as in equation 4.11 above.

f Where the formal symbol combination SSS . . .0 has the numerical value of 221 and SSS . . . . . . . . .0 has the
numerical value of 223.

8



And, as for equation 4.7 above, we have that numFS
[n] = FSGN[n], so that we have, corre-

sponding to the equations 4.6 - 4.11 above:

diagFS
[y] = FSGN[∃y(y =]◇numFS

[y]◇FSGN[∧]◇ y ◇FSGN[)] (5.5)

= FSGN[∃y(y =]◇FSGN[y]◇FSGN[∧]◇ y ◇FSGN[)] (5.6)

= FSGN[∃y(y =]◇FSGN[FSGN[Φ]]◇FSGN[∧]◇FSGN[Φ]◇FSGN[)] (5.7)

(by y = FSGN[Φ], as for equation 4.1)

= FSGN[∃y(y = FSGN[Φ] ∧Φ)] (5.8)

(by the assertion FSGN[A]◇FSGN[B] = FSGN[AB], as for 4.10)

so that the definition of diagFS
[y] corresponds to the definition of diag[n].

Now, diagFS
[y] represents a symbol combination that is a formula of the formal system, and

as we have seen from equation 5.5 above, can be defined in terms of numFS
[y], FSGN[∃y(y =],

FSGN[∧] and FSGN[)]. The latter terms, FSGN[∃y(y =], FSGN[∧] and FSGN[)] are meta
language terms which evaluate as constant values, and so the corresponding expressions in the
formal language must also evaluate as constant values. We will use the terms CFS

∃y(y =
, CFS
∧
, and

CFS
)

to represent these specific formal symbol combinations, so that we have:

diagFS
[y] =CFS

∃y(y =
◇numFS

[y]◇CFS
∧
◇ y ◇CFS

)

The formula G which is now given as:

G =∃y(y = Q ∧∀x¬ Pr f FS
[x, diagFS

[y]] )

=∃y(y = Q ∧∀x¬ Pr f FS
[x, CFS

∃y(y =
◇numFS

[y]◇CFS
∧
◇ y ◇CFS

)

] )

implies, by the rules of logic, the formal system formula:

∀x¬ Pr f FS
[x, CFS

∃y(y =
◇numFS

[Q]◇CFS
∧
◇Q◇CFS

)

] (5.9)

which is obtained by the substitution of Q for the free variable y in the formula

∀x¬ Pr f FS
[x, CFS

∃y(y =
◇numFS

[y]◇CFS
∧
◇ y ◇CFS

)

]

So, if G is true, then the above formula 5.9 is true. From that formula, we have that there is no
value of x for which

Pr f FS
[x, CFS

∃y(y =
◇numFS

[Q]◇CFS
∧
◇Q◇CFS

)

] applies.
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Applying the correspondence given by Gödel numbering to the above formula gives us that there
cannot be any proof of the formula that corresponds by Gödel numbering to the numerical value
of:

CFS
∃y(y =

◇numFS
[Q]◇CFS

∧
◇Q◇CFS

)

(5.10)

Applying the steps corresponding to equations 4.6 - 4.11 above, and since
Q = FSGN[U[y]], we have:

CFS
∃y(y =

◇numFS
[Q]◇CFS

∧
◇Q◇CFS

)

= FSGN[∃y(y =]◇numFS
[Q]◇FSGN[∧]◇Q◇FSGN[)]

= FSGN[∃y(y =]◇numFS
[Q]◇FSGN[∧]◇FSGN[U[y]]◇FSGN[)]

= FSGN[∃y(y =]◇FSGN[Q]◇FSGN[∧]◇FSGN[U[y]]◇FSGN[)]

= FSGN[∃y(y =]◇FSGN[FSGN[U[y]]]◇FSGN[∧]

◇FSGN[U[y]]◇FSGN[)]

= FSGN[∃y(y = FSGN[U[y]] ∧U[y])]

So by the correspondence given by Gödel numbering, since

CFS
∃y(y =

◇ numFS
[Q]◇CFS

∧
◇q◇CFS

)

= FSGN[∃y(y = FSGN[U[y]] ∧U[y] )]

then by the formula 5.9, there is not a proof of the formula

∃y(y = FSGN[U[y]] ∧U[y] )

which is the formula G as in 5.3 above. Thus the above analysis gives the result that Smith
asserts, and we note that the above result has been obtained by precisely following Smith’s
outline of a proof as given in his book.

6 The analysis of Smith’s proof

At first glance the above analysis of Smith’s argument appears to confirm Smith’s outline
assertions. But if we examine Smith’s argument in depth, we will see that it conceals various
anomalies.
The step 5.7 - 5.8 relies on the assertion that ∃y(y =, FSGN[Φ], ∧, Φ, and ) each represent a
formal symbol combination. That is a necessary assertion, since without that assertion, it cannot
be asserted that

diagFS
[y] = FSGN[∃y(y = FSGN[Φ] ∧Φ)]

an assertion that is required for the rest of Smith’s proof.
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Now, since y is a variable, and since y = FSGN[Φ], it follows, for the formula 5.7, which is:

diagFS
[y] = FSGN[∃y(y =]◇FSGN[FSGN[Φ]]◇FSGN[∧]◇FSGN[Φ]

that on the left-hand side, y is the free variable, while on the right-hand side, Φ is the free
variable. There is a definite relationship between the free variable term y on the left-hand
side and the free variable term Φ on the right-hand side of the equation, and which is given as
y = FSGN[Φ] (as in 5.4 above).
But it is fundamental that any formal symbol combination may be substituted for Φ. This results
in an irredeemable contradiction, since the expression FSGN[Φ] is itself necessarily defined as
representing a formal symbol combination. We now substitute the free variables on both sides
of the above equation; on the right-hand side we substitute Φ by the formal symbol combination
FSGN[Φ], and on the left-hand side we substitute y by the appropriate formal system numeralC
(a constant whose value is given by the appropriate substitutions in the formula y =FSGN[Φ]),
which gives the formula:

diagFS
[C] =

FSGN[∃y(y =]◇FSGN[FSGN[FSGN[Φ]]]◇FSGN[∧]◇FSGN[FSGN[Φ]]◇FSGN[)]

Now, since the free variables on both the left-hand side and right-hand side of the equation have
been substituted, both sides of the resultant formula must evaluate as a fixed value. But that
is not the case, because the right-hand side contains the term FSGN[FSGN[Φ]], the value of
which does not have a singular value, but is dependent on the value of Φ.
The immediate cause of the contradiction is obvious, since the free variable y on the left-hand
side of the formula 5.7 is a free variable of the formal language, whereas the free variable Φ on
the right-hand side is a free variable of the meta language. The same applies to the formula 5.4
(y = FSGN[Φ]). These anomalies demonstrate that Smith’s argument has confused the formal
language and the meta language.
The root cause of this confusion of language is Smith’s incorrect assertion that the formula
diag[n], as he defines it, is a primitive recursive number function, which leads to his flawed
assertion that there is an expression in the formal system that expresses that formula.
Primitive recursive number functions and relations are defined by Smith in Section 14.2 of his
book. It is clear by the definition that primitive recursive is defined for number functions and
relations which have, among other properties, free variables that have the domain of natural
numbers. In Section 15 of his book, Smith asserts that a formal language which has variables
whose domain is natural numbers and which satisfies certain other conditions can ‘express’ any
primitive recursive number function or relation.
In Smith’s proof of his Theorem 20.1 in his Section 20.1, he defines a function, (also see equation
4.3 above):

m∗n = [µx ≤ B(m,n)][[∀i < len[m]]{exf [x, i] = exf [m, i]}
∧ [∀i ≤ len[n]]{exf [x, i+ len[m]] = exf [n, i]}]

(6.1)

which is defined only in terms of variables whose domain is natural numbers. Smith asserts and
proves that this is a function that satisfies his definition of a primitive recursive number function.
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However, Smith then assumes that the variables m and n can be defined as any Gödel numbers;
that is, he implicitly assumes that terms such as GN[p] and GN[q], where p and q are any
symbol combinations of the formal system, may be substituted for the variables m and n to give
the function:

m∗n = [µx ≤ B(GN[p],GN[q])] [[∀i < len[GN[p]]]{exf [x, i] = exf [GN[p], i]}
∧ [∀i ≤ len[GN[q]]]{exf [x, i+ len[GN[p]]] = exf [GN[q], i]} (6.2)

so that Smith’s assertion is that:

[µx ≤ B(m,n)] [[∀i < len[m]]{exf [x, i] = exf [m, i]} (6.3)
∧ [∀i ≤ len[n]]{exf [x, i+ len[m]] = exf [n, i]}]

= [µx ≤ B(GN[p],GN[q])] [[∀i < len[GN[p]]]{exf [x, i] = exf [GN[p], i]}
∧ [∀i ≤ len[GN[q]]]{exf [x, i+ len[GN[p]]] = exf [GN[q], i]}

However, Smith also assumes that since the function 6.1 satisfies his definition of a primitive
recursive number function then the function 6.2 is also necessarily a primitive recursive number
function. But any assertion of equivalence/equality is an assertion that the properties of
the entities for which equivalence/equality is claimed are identical within the context of that
assertion. So while it may be correct that an assertion of equality of 6.1 and 6.2 is correct with
regard to the property of numerical value in the context of a system comprising of the rules and
axioms of arithmetic together with the definition of the Gödel numbering system, that assertion
of equality does not apply to the property of being a primitive recursive number function.
But Smith asserts that the function 6.2 is a primitive recursive number function because the
function 6.1 is a primitive recursive number function, and asserts that since the function 6.1 can
be expressed by a formula of the formal system, then it must necessarily be the case that the
function 6.2 can be expressed by a formula of the formal system.
This is an elementary logical error. The assumption that the function 6.2 also satisfies a rigorous
definition of a primitive recursive number function has no logical foundation; and since the
function 6.2 includes the free variables p and q whose domain is not natural numbers it clearly
does not satisfy the definition of a primitive recursive number function. It is plainly evident that
the function 6.2 cannot be expressed in the formal system, since no variable of the formal system
has the domain of all the symbol combinations of the formal system, while the variables p and
q in the expression 6.2 have the domain of all the symbol combinations of the formal system.
Smith is not alone in his disregard of the precise definition of number-theoretic functions and
relations, and in his failure to observe that the numerical equality of two entities does not
necessarily imply that those entities have precisely identical properties in all respects. There
have been similar treatments in various treatises on incompleteness proofs over a considerable
period, see, in particular Smullyan,[8], [9] and also Boolos,[1] Franzén,[2] Lind,[4] Most,[5] and
Nagel.[6]
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7 Further Analysis

Further analysis of Smith’s assumptions may be of assistance in understanding how such errors
may be avoided. If we consider Smith’s assumption in the assertion of 4.7 above (which is
Smith’s assertion in his ‘Proof for (i)’ which follows his Theorem 20.2 in his Section 20.1):

num[n] =GN[n] (7.1)

we see that the assumption is that since num[n] is a primitive recursive number function then
GN[n] is also a primitive recursive number function and so it is expressible in the formal system.
In this case, the free variable n on both sides of the equation does have the domain of natural
numbers. However,the original definition of num[n] is as a primitive recursive number function
(see equation 4.4 above) with variables that have the domain of natural numbers, whereas the
Gödel numbering function GN is defined with a free variable that has the domain of symbols
and symbol combinations of the formal system.
Smith’s proof necessarily depends on an assumption (as demonstrated in equation 5.6 above) that
an equation exists for the formal system that corresponds to the above equation num[n]=GN[n].
This equation (as in equations 5.5 - 5.6) must be either:

numFS
[y] = FSGN[y] (7.2)

where the variable y on both sides of the equation is a variable of the formal system, or:

numFS
[y] = FSGN[y] (7.3)

where the variable y on the left-hand side is a variable of the formal system, and the variable y
on the right hand side is a variable of the meta-language.
Now the error in Smith’s assumptions regarding primitive recursive number-theoretic expres-
sions becomes readily apparent. Clearly equation 7.2 cannot be correct, since the variable of
FSGN must have the domain of all symbol combinations of the formal system, whereas y has
the domain only of natural numbers.
But equation 7.3 cannot be correct either. This equation must be an equation of the meta-
language. This is so, since:
a) it contains a variable y of the meta-language, and
b) a variable of the formal language, such as y cannot be an active variable in expressions of
the meta language. In the meta-language the variable y is a specific value, not a variable; it is
one of the specific values of the domain of the free variable Φ of the Gödel numbering function
GN[Φ], which is a function of the meta-language, and Φ is a variable of the meta-language.g

And since equation 7.3 is an equation of the meta-language, then it must follow the common
rules for such equations. That means that since the left-hand side contains no variable of the
meta-language, then the right-hand side should evaluate as a constant value, regardless of the
value of y. But it does not evaluate as a constant value.

g The claim that FSGN[y] is intended to represent a purported expression of the formal language does not alter
the above facts.
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The conclusion is that the assumption generated by the Smith’s incorrect assertion regarding
primitive recursive number-theoretic expressions leads in either case to a logical absurdity.
Assertions such as numFS

[y] = FSGN[y] are commonly justified by the insertion of various
values for y and y. In this way the result is deemed to be so obvious that further analysis
is unwarranted. But the use of specific instances in this way ignores the difference between
meta language and formal language. The assumption is that such instances circumvent the need
for an actual proof of the proposition numFS

[y] = FSGN[y]. But it is an accepted principle of
mathematics that a finite number of positive results cannot prove the general result for an infinite
number of cases. For example, it is not accepted that Goldbach’s conjecture is proven simply on
the basis that it is has been confirmed to apply for a large but finite quantity of natural numbers.
By ignoring this principle, and by invoking specific instances as justification for the assertion
that numFS

[y] = FSGN[y], the fundamental distinction between the formal language and the
meta language is obfuscated.
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