Footnotes:
A referee’s comments: laughable or depressing?
Page last updated 3 Jun 2023
I sent a short paper to the journal Analysis, (Footnote: Analysis is published quarterly by the Oxford University Press on behalf of the Analysis Trust, see also the Wikipedia entry.) pointing out an error in an article (Footnote: ‘Yablo Without Gödel’, Volker Halbach, and Shuoying Zhang, PDF Yablo without Gödel. Analysis, 77(1), 53-59, 2016.) that had been recently published in their journal. It was rejected on the basis of a referee’s report. That report demonstrated an alarming lack of any in-depth knowledge by the referee of what he was talking about. I wrote to Analysis to point out the referee’s errors, but that was ignored.
Below is a copy of the original text that I sent, and a copy of the referee’s report.
Original paper as sent to Analysis
Abstract
Halbach & Zhang have published an article Yablo Without Gödel (2016) that claims that they can generate the Yablo paradox without using methods such as the diagonal lemma or the recursion theorem, and avoiding any explicit circularity. However, they make an assumption that conceals the fact that their system lacks the fundamental requirements of a logical system.
1: Introduction
Halbach & Zhang (2016) have published an article that claims that they can generate the Yablo paradox (Footnote: Stephen Yablo, 1993. PDF Paradox Without Self-Reference, Analysis, 53(4): 251–252.) without using methods such as the diagonal lemma or the recursion theorem, and avoiding any explicit circularity. However, it is readily demonstrated that their method relies on the use of an assumption that is logically untenable.
2: Conflation of constant and variable terms
Halbach & Zhang (hereinafter referred to as HZ) state:
We work in a language [T] of predicate logic. Apart from the identity symbol, the language contains the identity symbol, a binary predicate symbol
Now, whenever the free variable in the function
For example, if the substituted value is
Clearly, the conflation of constant and variable terms is the source of the contradiction that HZ remark upon. It is not at all surprising that a conflation of constant and variable terms results in a contradiction; the system that HZ have described is a system that is lacking a fundamental requirement of a logical system.
This conclusion can also be adduced by considering the inverse of the one-to-one mapping function, as follows:
If it is possible for the predicate
3: Conclusion
When there is an assumption to the effect that, although something such as a function is utilized within a proof, it is not actually essential to the proof (such as HZ’s hypothetical function), that assumption should always be viewed with more than a modicum of suspicion.
The referee’s response
The referee’s response was:
The author claims to have identified an error in Halbach & Zhang’s
“Yablo without Gödel”. In particular, Halbach & Zhang claim that
Unfortunately, the author is wrong. Here are two ways to show this.
Example 1. In standard Gödelisation,
Example 2. Start with a countable basic language,
Note: Example 2 is a variant on Halbach & Zhang’s own approach; see the passage quoted by the author.
Here the referee demonstrates quite clearly that he has completely missed the entire point of my paper - the crucial point that should be obvious to any discerning reviewer is that Halbach and Zhang assume that an enumeration of the functions of a language can be achieved in the same language as the functions being enumerated.
Regarding the Example 1 provided by the referee, well, of course it is the case that
Halbach and Zhang make no mention whatsoever of Gödelisation, Gödel numbering, or meta-language in relation to their claim, except to specifically assert that:
- their claim relies neither on Gödel coding nor the Gödel diagonal lemma, and
- they are working within a single language.
And in fact, Halbach and Zhang specifically refer to one single language which includes all the terms that they refer to, including the postulated enumeration function
We work in a language of predicate logic…For each formula in the language, there is a closed term
Halbach and Zhang’s assertion that
Moreover, when the referee states that “
Regarding the Example 2 provided by the referee, the referee refers to a language
“just define
and simply assumes that such a definition is possible within the language itself, and provides no proof whatsoever of this assertion. It is easily shown that there cannot be such an enumeration within the language itself, as shown fairly informally at Enumeration within a Language? and for a formal proof, see PDF The Impossibility of Representation of a Gödel Numbering Function by a Formula of the Formal System.
In summary, the referee’s response demonstrates an unfortunate fact - that referees all too often don’t actually apply any logical thought to what they do, but instead simply rehash conventional dogma - a process that is almost guaranteed to stifle any dissenting voice. On the one hand, the referee’s ignorance is laughable; but it is also depressing to think that people who are purportedly well-educated can be so woefully inadequate at what they do.
Rationale: Every logical argument must be defined in some language, and every language has limitations. Attempting to construct a logical argument while ignoring how the limitations of language might affect that argument is a bizarre approach. The correct acknowledgment of the interactions of logic and language explains almost all of the paradoxes, and resolves almost all of the contradictions, conundrums, and contentious issues in modern philosophy and mathematics.
Site Mission
Please see the menu for numerous articles of interest. Please leave a comment or send an email if you are interested in the material on this site.
Interested in supporting this site?
You can help by sharing the site with others. You can also donate at
where there are full details.