This page is keyboard accessible:
• Use Tab, Shift + Tab keys to traverse the main menu. To enter a sub-menu use the Right Arrow key. To leave a sub-menu use the Left Arrow or the Escape key.
• The Enter or the Space key opens the active menu item.
• To skip the menu and move to the main content, press Tab after the page loads to reveal a skip button.
• To get back to the top of the page anytime, press the Home key.
• For more information, click here: Accessibility   Close this tip.

Note: Full functionality of this web page requires JavaScript to be enabled in your browser.

A Step by Step Guide to Gödel’s Incompleteness Proof
3: The axioms and rules of the formal system




Note that (provided you have JavaScript enabled) clicking on (hideshow) will reveal further details, while clicking again will hide it. Also, clicking on (hideshow Gödel’s) will reveal relevant parts of Gödel’s text (shown in green), while clicking again will hide it. Please note that older browsers may not display some symbols correctly.


(like this)


(like this)


If there is any difficulty in following any part of the proof, please contact me and I will try to help. And if you have any suggestions as to how this guide might be improved, please contact me. This guide is intended to be read alongside the English translation of Gödel’s original proof which can be viewed online at English translation of Gödel’s original proof or as a PDF file at English translation of Gödel’s original proof, PDF file.


The axioms and rules of the formal system

As is the case for the formal system P in general, the precise details of the axioms of this system are not important. It might be wondered whether the system P has sufficient axioms and rules of inference - that perhaps some detail has been omitted which renders the system not powerful enough to be complete. But this would be to miss the point - which is that Gödel’s proof can in principle be applied to any formal system (provided it contains a certain amount of basic arithmetic, such as defining natural numbers and basic operations on those numbers). So that even if there was some deficiency in the system P, the overall thrust of the argument would remain and be applicable to all formal systems which include a basic arithmetical core. That said, you still need to be familiar with the terminology that Gödel uses if you are to follow the principle of Gödel’s argument.


Note that, while in most logical systems in common use today, every variable in an axiom is bound by a quantifier, in Gödel’s system P, this is not the case - the axioms can have variables which are not bound by a quantifier. However, every such axiom can be converted to a formula in which all the variables are bound, as will be seen below.


The rules of inference of the system P

There are two rules of inference (hideshow Gödel’s) .

  1. If the formula (~(b)) ∨ (c) is an axiom or is a proven formula, and b is an axiom or is proved, then the formula c is proved.
  2. If the formula a is an axiom or is a proven formula, then the formula v∀(a) is proved, where v is any variable.

“A formula c is called an immediate consequence of a and b, if a is the formula (~(b)) ∨(c), and an immediate consequence of a, if c is the formula v∀(a), where v denotes any given variable. The class of provable formulae is defined as the smallest class of formulae which contains the axioms and is closed with respect to the relation ‘immediate consequence of’. ”


Hence, given an axiom or proven formula whose variables are not bound by a quantifier, by repeated application of rule 2 we can obtain the same formula where each variable is bound by a quantifier.


The axioms of the system P

Gödel divides the axioms into five sections.


Note that the axioms II, III, and V are actually Axiom Schemas; this means that each ‘axiom’ actually represents infinitely many axioms, which are given by replacing the appropriate variables in the schemas by specific values. For example, for the Axiom Schema II.1 below (p ∨ p ⊃ p), we could replace p by any formula of the formal system to give a single axiom.


Note: the axioms as given include some symbols which are not actually symbols of the formal system P. The reason for this is as follows:

The system P uses a very small set of symbols. There are several symbols in common usage which are effectively abbreviations for long combinations of the basic symbols of the system P. Gödel uses these symbols because the actual representation in the notation of the system P would be very lengthy and difficult to read. The symbols Gödel uses are listed is below, along with the equivalent representation by symbols of the formal system P:



Note that Gödel also uses the symbol . in the axiom I.3; this is equivalent to the symbol.


Note that, for convenience Gödel follows convention in omitting some brackets that would be present in the actual corresponding formula of the formal system. For example, in the following, wherever the symbol (the ‘implies’ symbol) occurs, all of the expression to the left of the symbol implies all of the expression to the right of the symbol, unless that part of the expression containing the symbol is enclosed by brackets.


Axioms I:

These are elementary axioms about natural numbers.


1. ~(fx1 = 0)

No successor of a number can be equal to zero.


2. fx1 = fy1 ⊃  x1 = y1

Given two numbers, if we add one to each number, and the resultant numbers are equal, then that implies (the symbol) that the original numbers are both equal.


3. x2(0) ∧ x1∀(x2(x1) ⊃ x2(fx1))  ⊃  x1∀(x2(x1))

This is what is usually called an axiom of induction. Given any class of natural numbers, if 0 is a member of that class, and if, for every natural number x1, if x1 being a member of that class implies that x1 + 1 is also a member of that class, then every natural number is a member of that class.


Axioms II:

These are Axiom Schemas, based on axioms of classical propositional logic. In the Schemas below p, q and r can be any formula of the formal system.


1. p ∨ p  ⊃  p

For any formula p, p or p implies p.


2. p  ⊃  p ∨ q

For any formula p, p implies ‘p or any other formula q’.


3. p ∨ q  ⊃  q ∨ p

For any formulas p and q, ‘or q’ implies ‘q or p’.


4. (p ⊃ q)  ⊃  (r ∨ p  ⊃  r ∨ q)

For any formulas p, q and r, ‘p implies q’ implies that ‘(r or p) implies (r or q)’


Axioms III:

In these Axiom Schemas,

a is any formula,

v is any variable,

b is a formula and

c is a sign;

b and c are subject to certain conditions (hideshow Gödel’s).


“Every formula derived from the two schemata by making the following substitutions for a, v, b, c (and carrying out in I the operation denoted by “Subst”): for a any given formula, for v any variable, for b any formula in which v does not appear free, for c a sign of the same type as v, provided that c contains no variable which is bound in a at a place where v is free.
c is therefore either a variable or 0 or a sign of the form f…fu where u is either 0 or a variable of type 1.”


1. v∀(a)  ⊃  Subst a(v|c)

This states that, if for all v, formula a applies, then every formula given by the substitution of a valid value c for v applies.


As Gödel notes, the Subst function is a function of the meta-language, not of the formal system P. So while there is no expression of the formal system that corresponds to the above expression when values are simply inserted for a, b, c, and v, there are formulas that correspond to the expressions given when appropriate values are inserted for a, b, c, and v and the value given by the meta-language function Subst a(v|c) (which is a symbol string of the system P) is substituted in place of Subst a(v|c).


Note that normally we use the term substitution to refer to the substitution of a variable by a specific value which is a member of the domain of the variable. Here Subst allows variables to be substituted by variables, provided they are of the same type, subject to certain conditions; this is akin to changing the names of the variables in a formula.


2. v∀(b ∨ a)  ⊃  b ∨ v∀(a)


This states that, ‘if for all v, b or a’ applies, then ‘b or for all v, a’ applies (provided that v is not a free variable in b) .


Axiom IV:

In this Axiom Schema,

v and u are variables, where u is one type higher than v, and

a is formula which does not have u as free variable


1. (∃u)(v∀(u(v)≡a))

For every formula, there is a corresponding class whose members satisfy that formula.


Axiom V:

In this axiom we have type 1 and type 2 variables.


1. x1∀(x2(x1) ≡ y2(x1))  ⊃  x2 = y2

If two classes have precisely the same members, then they are identical.


Further axioms are defined by this axiom by applying Type-lift to the basic formula above.

section divider







Diverse opinions and criticisms are welcome, but messages that are frivolous, irrelevant or devoid of logical basis will be blocked. Difficulties in understanding the site content are usually best addressed by contacting me by e-mail. Note: you will be asked to provide an e-mail address - any address will do, it does not require verification. Your e-mail will only be used to notify you of replies to your comments - it will never be used for any other purpose and will not be displayed. If you cannot see any comments below, see Why isn’t the comment box loading?.

section divider

The Lighter Side


Paper on the diagonal proof

There is now a paper that deals with the matter of language and the diagonal proof, see On Considerations of Language in the Diagonal Proof.

section divider

Other recently added pages

The Myths of Platonism


Goodman’s Paradox


The Platonist Rod paradox


The Balls in the Urn Paradox


section divider

Lebesgue Measure

There is now a new page on a contradiction in Lebesgue measure theory.

section divider

Easy Footnotes

I found that making, adding or deleting footnotes in the traditional manner proved to be a major pain. So I developed a different system for footnotes which makes inserting or changing footnotes a doddle. You can check it out at Easy Footnotes for Web Pages (Accessibility friendly).

section divider

O’Connor’s “computer checked” proof

I have now added a new section to my paper on Russell O’Connor’s claim of a computer verified incompleteness proof. This shows that the flaw in the proof arises from a reliance on definitions that include unacceptable assumptions - assumptions that are not actually checked by the computer code. See also the new page Representability.

Previous Blog Posts

Moderate Platonism

Descartes’ Platonism

The duplicity of Mark Chu-Carroll

A John Searle Inanity

Man versus Machine

Fake News and Fake Mathematics

Ned Block’s Blockhead

Are we alone in the Universe?

Good Math, Bad Math?

Bishops Dancing with Pixies?

Artificial Intelligence

Cranks and Crackpots

The Chinese Room


For convenience, there are now two pages on this site with links to various material relating to Gödel and the Incompleteness Theorem


– a page with general links:

Gödel Links


– and a page relating specifically to the Gödel mind-machine debate:

Gödel, Minds, and Machines

Printer Friendly

All pages on this website are printer friendly, and will print the main content in a convenient format. Note that the margins are set by your browser print settings.

Note: for some browsers JavaScript must be enabled for this to operate correctly.


Comments on this site are welcome, please see the comment section.


Please note that this web site, like any other is a collection of various statements. Not all of this web site is intended to be factual. Some of it is personal opinion or interpretation.


If you prefer to ask me directly about the material on this site, please send me an e-mail with your query, and I will attempt to reply promptly.


Feedback about site design would also be appreciated so that I can improve the site.

Copyright © James R Meyer 2012 - 2018