Logic and Language

Logic and Language

Copyright © James R Meyer 2012 - 2018 www.jamesrmeyer.com

This page is keyboard accessible:

• Use**Tab**, **Shift + Tab **keys to traverse the main menu. To enter a sub-menu use the **Right Arrow** key. To leave a sub-menu use the **Left Arrow** or the **Escape** key.

• The**Enter** or the **Space** key opens the active menu item.

• To skip the menu and move to the main content, press**Tab** after the page loads to reveal a skip button.

• To get back to the top of the page anytime, press the**Home** key.

• For more information, click here: Accessibility Close this tip.

• Use

• The

• To skip the menu and move to the main content, press

• To get back to the top of the page anytime, press the

• For more information, click here: Accessibility Close this tip.

Note: Full functionality of this web page requires JavaScript to be enabled in your browser.

Many mathematicians and logicians love the notion of abstraction - taking an initial idea and tweaking it so that nothing only the absolute fundamental essence of it remains.

That’s an admirable ideal - but you have to be careful that when you do that, you don’t throw out the baby with the bathwater. Unfortunately, in some cases, that is precisely what mathematicians have done. For example, they appear to believe that the definition of a formal system can be divorced entirely from any reference to the physical world. But can it?

In standard descriptions of formal systems such as the Peano axioms it is assumed at the outset that it is self-evident what a variable is. For example, the very first Peano axiom is commonly stated as: (Footnote: e.g. Wikipedia: Peano axioms, Wolfram: Peano axioms, Encyclopaedia Britannica: Peano axioms)

0 is a natural number

Here *“natural number”* is a variable, but here we are, supposedly, at the very the beginning of the definition of a formal system. Yet there is no description whatsoever of what a variable is, what a natural number is, or even of what a domain of a variable is. And this is only the first axiom.

Suppose that one were trying to explain this to someone who had been a castaway on a desert island since early childhood, before he had any acquaintance with the written word. Presumably our castaway would have some sort of mental concept similar to the notion of variables in relation to physical objects, so that when he would say, "that’s a fish", he means that there is a physical thing that he is referring to that satisfies his notion of what a fish in general is like. Or he could have some sort of mental concept similar to the notion of variables in relation to abstract things, such as when he ascribes an impending storm to one god, and the subsequent arrival of sunshine to another god - so that when he refers to a god, he is referring to some abstract notion that he has conceived, but for which he does not have any good evidence for its actual existence.

But it is most unlikely that he would have an innate concept of the mathematical notion of a variable as it occurs in the Peano axioms. So when he is told “0 is a natural number”, he would presume that “0” is a name for either a physical thing or for a non-physical concept like a deity; and that either “*natural numbers*” are some sort of physical things or that they are some sort of non-physical concept.

However, with the Peano axioms, the term “*natural number*” does not refer to a physical object like a fish. But it does refer to physical things that are sequences of symbols of a certain type. So, really, before even beginning the Peano axioms, in order to define a formal system, we should be defining what symbols are, what symbol sequences are, and what we mean by a variable whose domain is symbol sequences.

But what happens if one tries to explain what a symbol is without making any reference at all to physical objects? Can it be done within a purely formal system? Can it be done at all? I don’t think so. And after explaining what a symbol is, you then have to define a sequence of symbols.

So can we simply ignore the physical concepts that are inherent in the Peano axioms, and come up with a definition of numbers that are totally abstract, in the same way that our castaway has an abstract notion of gods?

Platonists like to try to divest all physical references from mathematics. For a committed Platonist, the term “*natural number*” refers not a physical symbol sequence, but to an abstraction of the above concepts. By abstraction, the Platonist can come up with a set X of rules that will be satisfied by a certain type of entity that is a natural number, and where the set X of rules makes no mention of the physical world. The Platonist then asserts that that set X of rules is the ultimate definition of what a natural number is. He will say that every natural number that we know of satisfies this set of rules.

Bur just because we know that a natural number * n* satisfies a certain set of rules X, that does not necessarily mean that the set of rules X includes every condition that is required for

To assume that it does is a classic logical blunder. Simply because A (in this case that a particular * n* which we know is a natural number) implies B (in this case that

And in this case, it isn’t so - the converse would be that if * m* satisfies a set of rules X, then it is necessarily the case that

The result is the common perception that numbers can be a purely abstract notion totally divorced from physical reality, which is based on an assumption that has no logical basis. This notion ties with the belief that there “exist” real numbers which somehow belong to the domain of a variable, but at the same time cannot ever be substituted for that variable - a belief arising from the confusion of different levels of language - see, for example The Diagonal Proof.

And these Platonist notions give rise to something I have often encountered; some people claim there is an essential difference between a symbol sequence of a formal system and a symbol sequence that is claimed to not itself actually belong to a system, but it is only a reference to an abstract concept belonging to an abstract system. For example, they might claim that “*x* + 6 > 3” is not itself a number-theoretic relation, but is only an expression that refers to an abstract number-theoretic relation. But at the same time, if they are talking about formal systems, they insist that a symbol sequence such as “*x* + *SSSSSS*0 > *SSS*0” belongs to a formal system, and that in this case “*x* + *SSSSSS*0 > *SSS*0” is not an expression that refers to an abstract number-theoretic relation - although they will admit that there is some sort of isomorphism between it and an abstract number-theoretic relation (which they never actually define).

But of course there is no essential difference between “*x* + 6 > 3” and “*x* + *SSSSSS*0 > *SSS*0” - they simply belong to slightly different systems.

But it is quite often the case that someone will claim that there is a difference and that one (“*x* + 6 > 3”) refers to abstract concepts, while the other (“*x* + *SSSSSS*0 > *SSS*0”) is simply a symbol sequence of a formal system.

In fact, Gödel’s proof of incompleteness might be said to rely on this pretense, since without it, his proof method results in a blatant contradiction, see Gödel’s proposition V.

Footnotes:

Diverse opinions and criticisms are welcome, but messages that are frivolous, irrelevant or devoid of logical basis will be blocked. Difficulties in understanding the site content are usually best addressed by contacting me by e-mail. Note: you will be asked to provide an e-mail address - any address will do, it does not require verification. Your e-mail will only be used to notify you of replies to your comments - it will never be used for any other purpose and will not be displayed. If you cannot see any comments below, see Why isn’t the comment box loading?.

How you can tell if someone is a crackpot

A review of Buldt’s *The Scope of Gödel’s First Incompleteness Theorem*

There is now a new page on a contradiction in Lebesgue measure theory.

There is now a new page Halbach and Zhang’s *Yablo without Gödel* which analyzes the illogical assumptions used by Halbach and Zhang.

I found that making, adding or deleting footnotes in the traditional manner proved to be a major pain. So I developed a different system for footnotes which makes inserting or changing footnotes a doddle. You can check it out at Easy Footnotes for Web Pages (Accessibility friendly).

I have now added a new section to my paper on Russell O’Connor’s claim of a computer verified incompleteness proof. This shows that the flaw in the proof arises from a reliance on definitions that include unacceptable assumptions - assumptions that are not actually checked by the computer code. See also the new page Representability.

13 Jan 2017 Ned Block’s Blockhead

8 Apr 2016 Are we alone in the Universe?

13 May 2015 Good Math, Bad Math?

31 Mar 2015 Cranks and Crackpots

16th Mar 2015 Bishops Dancing with Pixies?

For convenience, there are now two pages on this site with links to various material relating to Gödel and the Incompleteness Theorem

– a page with general links:

– and a page relating specifically to the Gödel mind-machine debate:

All pages on this website are printer friendly, and will print the main content in a convenient format. Note that the margins are set by your browser print settings.

Note: for some browsers JavaScript must be enabled for this to operate correctly.

Comments on this site are welcome, please see the comment section.

Please note that this web site, like any other is a collection of various statements. Not all of this web site is intended to be factual. Some of it is personal opinion or interpretation.

If you prefer to ask me directly about the material on this site, please send me an e-mail with your query, and I will attempt to reply promptly.

Feedback about site design would also be appreciated so that I can improve the site.

Copyright © James R Meyer 2012 - 2018

www.jamesrmeyer.com