This page is keyboard accessible:
• Use Tab, Shift + Tab keys to traverse the main menu. To enter a sub-menu use the Right Arrow key. To leave a sub-menu use the Left Arrow or the Escape key.
• The Enter or the Space key opens the active menu item.
• To skip the menu and move to the main content, press Tab after the page loads to reveal a skip button.
• To get back to the top of the page anytime, press the Home key.
• For more information, click here: Accessibility   Close this tip.

Note: Full functionality of this web page requires JavaScript to be enabled in your browser.
 

On Halbach & Zhang’s ‘Yablo without Gödel’

In an article entitled ‘Yablo Without Gödel’ (Footnote: Volker Halbach, and Shuoying Zhang, Yablo without Gödel (PDF). Analysis, 77(1), 53-59, 2016) in the journal Analysis, (Footnote: Analysis is published quarterly by the Oxford University Press on behalf of the Analysis Trust, see also the Wikipedia entry) Halbach & Zhang claim that they can generate the Yablo paradox (Footnote: Stephen Yablo. Paradox Without Self-Reference, Analysis 53 (4): pages 251-252. 1993. It can be viewed Paradox Without Self-Reference: here.) without using any circularity or self-reference, and without using methods such as the diagonal lemma or Gödel numbering.

 

However, they make a ridiculous assumption that renders their claim of a proof utterly laughable. It is also rather amusing that the journal Analysis proudly proclaims on their website that it is the “most established and esteemed journal for short papers in philosophy. We are happy to publish excellent short papers ….” Apparently they are also very happy to publish complete crap.

 

The assumption of an enumeration within a Language

In defining a formal language, Halbach & Zhang state:

 

We work in a language [ T ] of predicate logic. Apart from the identity symbol, the language contains a binary predicate symbol <, and a ternary predicate symbol Sat(x, y, z). For each formula φ in the language, there is a closed term φ in the language. This can be achieved by adding countably many new constants, c1, c2, … to the language and then fixing some 1-1-mapping between the set of constants and the set of formulae in the language with all constants. This mapping doesn’t play any role in the proof of the paradox; it only helps to motivate our version TS of the T-sentences below. No assumptions about the structure of sentences are used in our proof. We write φ for the constant for φ.

 

Halbach and Zhang specifically refer to one single language which includes all the terms that they refer to, including the postulated enumeration function φ (where φ is the free variable of the function φ ) within that same language. But although Halbach and Zhang assert that all these terms belong to the same language, they do not provide any proof that it is possible that the function φ can be in that same language. In fact, as shown below, it is trivially easy to show that it is impossible.

 

Halbach & Zhang assert that whenever the free variable φ in the function φ is substituted by a valid substitution value, the result is a closed term, that is, the term can have no free variables. But if the substitution value is a formula with one or more free variables, then, since all terms belong to the same language, (Footnote: In Halbach & Zhang’s account, only one language is involved and there is no mention of a meta-language.) the resultant term is necessarily a term that contains one or more free variables that are not subject to a quantifier, and yet Halbach & Zhang assert that the term is closed and has no free variables. For example, if the substituted value is xx > y, then x, y has one free variable y, and hence this term is not a closed term. (Footnote: The rather unusual terminology for the mapping function tends to obfuscate. As a conventional example, given the function f(x) = x + 2, and if the x is substituted by y3 - 3y, we obtain the new function h(y) = y3 - 3y. The free variable x of the function f has been substituted by a function with a free variable, and the result is evidently a function with a free variable.)

 

It is worth pointing out here that, besides the obvious claim implicit in the title of their article, Halbach & Zhang specifically assert that their claim relies neither on Gödel numbering nor the diagonal lemma, and moreover, make no mention of a meta-language (Gödel numbering is a function in a meta-language to the language being coded).

 

A contradiction arises, what a surprise - not!

Halbach & Zhang discover that their system results in a contradiction. That’s not a surprise to me. But the astonishing thing is that Halbach & Zhang think that the contradiction shows something deep and profound, whereas all it shows is their lack of in-depth knowledge of their subject matter. Halbach, along with Albert Visser, has also published two papers (Footnote: Volker Halbach & Albert Visser, Self-reference in Arithmetic 1 (PDF), Self-reference in Arithmetic 2 (PDF), Review of Symbolic Logic, 7(4), Part 1: 671-691, Part 2: 692-712 (2014)) in the Journal of Symbolic Logic that amount to forty-two pages, and which are supposed to be an authoritative review of self-reference. But throughout the papers Halbach and Visser simply assume that a formal language can self-reference - and even though the papers are meant to be a review of self-reference, there is no attempt at all to prove that such a self-reference can occur in a fully formal language. Unfortunately this is completely typical of the current approach of academic people who like to call themselves “logicians”, where an unprovable assumption has been elevated to a dogmatic mantra that no-one is allowed to question.

 

Enumeration within a Language

It is elementary to demonstrate that an enumeration of the formulas of a given language L can be achieved in a meta-language to the language L. But it is also easily shown that there cannot be such an enumeration within the language itself, as follows:

 

We assume that there is a enumeration of the formulas of a given language L within L itself (this is what Halbach & Zhang assert). Then there must be some function f(x) that defines that enumeration. Since the enumeration function is itself a formula to be enumerated, it follows that for one specific numerical value of the free variable x in f(x), we must have a result such as:

 

f(123…) = f(x)

 

where 123… is some specific numerical value. This, of course, is absurd, since now we have a non-variable term on the left side and a variable term on the right side. It follows that Halbach & Zhang’s claim that there can be a formula f in the same language L and which enumerates the formulas of that same language is an assumption that has no logical basis.

 

This conclusion can also be adduced by considering the inverse of Halbach & Zhang’s purported mapping function, as follows:

 

If it is possible for the predicate Sat to evaluate from the values given to its variables, then it must be able to access the information contained in any constant that is purportedly given by the mapping φ. In other words it must be able to access the inverse of the purported mapping function φ. If we designate that inverse by Map-1(x), then for example, we have, for the formula xx > y, that x, y = c where c is (according to Halbach & Zhang) a constant, and so the inverse would be Map-1(c) = ∀xx > y. This, of course, is absurd, since we now have a constant term on the left-hand side of the equality, but a free variable term y on the right-hand side of the equality.

 

Conclusion

It is obvious that it is the assumption of an enumeration function within the language itself, and the resultant conflation of constant and variable terms, is the source of the contradiction that Halbach & Zhang remark upon in their article. It isn’t at all surprising that a conflation of constant and variable terms results in a contradiction, since the system that Halbach & Zhang have described is a system that is lacking the fundamental requirements of logical systems.

 

Halbach & Zhang say in their article that they “hope to further our understanding of what the source of the paradox is”, and indicate their total bafflement at what is patently obvious. As demonstrated on the page Yablo’s paradox, it is child’s play to see what the source is. It is no surprise that the source is the same as in many similar paradoxes - the source is a self-reference engendered by vagueness of definition.

 

What is very surprising is that, while one can presume that referees for the journal Analysis examined Halbach & Zhang’s article, they appear to have simply accepted Halbach & Zhang’s assumptions without subjecting them to even the most basic sort of critical appraisal. But when there is an assumption to the effect that, although something is utilized within a proof it is not actually essential to the proof (such as Halbach & Zhang’s hypothetical function), that assumption should always be viewed with more than a modicum of suspicion.

 

 

Footnotes:

 

 

Diverse opinions and criticisms are welcome, but messages that are frivolous, irrelevant or devoid of logical basis will be blocked (comments will be checked before appearing on this site). Difficulties in understanding the site content are usually best addressed by contacting me by e-mail. Note: you will be asked to provide an e-mail address - this will only be used to notify you of replies to your comments - it will never be used for any other purpose, will never be displayed and does not require verification. Comments are common to the entire website, so please indicate what section of the site you are commenting on.

 

If you cannot see any comments below, it may be that a plug-in on your browser is blocking Disqus comments from loading. Avast anti-virus in particular is known to do this, especially with Internet Explorer and Safari. See Disqus Browser plug-in/extension conflicts or Why isn’t the comment box loading?.

 

 

Please wait for comments to load …  

 

The Lighter Side

 

NEWS

Lebesgue Measure

There is now a new page on Lebesgue measure theory and how it is contradictory.

 

 

Illogical Assumptions

There is now a new page Halbach and Zhang’s Yablo without Gödel which demonstrates the illogical assumptions used by Halbach and Zhang.

 

 

Peter Smith’s ‘Proof’

It has come to my notice that, when asked about the demonstration of the flaw in his proof (see A Fundamental Flaw in an Incompleteness Proof by Peter Smith PDF), Smith refuses to engage in any logical discussion, and instead attempts to deflect attention away from any such discussion. If any other reader has tried to engage with Smith regarding my demonstration of the flaw, I would be interested to know what the outcome was.

 

 

Easy Footnotes

I found that making, adding or deleting footnotes in the traditional manner proved to be a major pain. So I developed a different system for footnotes which makes inserting or changing footnotes a doddle. You can check it out at Easy Footnotes for Web Pages (Accessibility friendly).

 

 

O’Connor’s “computer checked” proof

I have now added a new section to my paper on Russell O’Connor’s claim of a computer verified incompleteness proof. This shows that the flaw in the proof arises from a reliance on definitions that include unacceptable assumptions - assumptions that are not actually checked by the computer code. See also the new page Representability.

 

 

New page on Chaitin’s Constant

There is now a new page on Chaitin’s Constant (Chaitin’s Omega), which demonstrates that Chaitin has failed to prove that it is actually algorithmically irreducible.

 

Previous Blog Posts  

 

13 May 2015 Good Math, Bad Math?

 

30 Apr 2015 The Chinese Room

 

31 Mar 2015 Cranks and Crackpots

 

16th Mar 2015 Bishops Dancing with Pixies?

 

23rd Feb 2015 Artificial Intelligence

 

Links  

 

For convenience, there are now two pages on this site with links to various material relating to Gödel and the Incompleteness Theorem

 

– a page with general links:

Gödel Links

 

– and a page relating specifically to the Gödel mind-machine debate:

Gödel, Minds, and Machines

 

Printer Friendly

 

All pages on this website are printer friendly, and will print the main content in a convenient format. Note that the margins are set by your browser print settings.


Note: for some browsers JavaScript must be enabled for this to operate correctly.

 

Comments

 

Comments on this site are welcome, please see the comment section.

 

Please note that this web site, like any other is a collection of various statements. Not all of this web site is intended to be factual. Some of it is personal opinion or interpretation.

 

If you prefer to ask me directly about the material on this site, please send me an e-mail with your query, and I will attempt to reply promptly.

 

Feedback about site design would also be appreciated so that I can improve the site.

 


Copyright © James R Meyer 2012 - 2017  
www.jamesrmeyer.com